发布文章

考研数学冲刺阶段如何高效复习

2017-12-08 报考指导

  我们在准备考研数学冲刺阶段的复习时,想要高效学习的小伙伴们,要规划好自己的复习计划。小编为大家精心准备了考研数学冲刺的复习攻略,欢迎大家前来阅读。

考研

  考研数学冲刺的复习方法

  一、临阵磨枪与重心后移

  中国有句俗话:“临阵磨枪,不快也光”。这就说明考前强化训练的重要性。考前两周做两到三套模拟题,对提高解题速度、激活所学知识非常关键,同时也可以在做题过程中查缺补漏,并探索适合于自己的考试答题的时间分配规律。

  做模拟题不要斤斤计较分数的高低,主要是要熟悉考研试题的特点。模拟题也可起到增加考试经验和查缺补漏的作用。 但是,仅靠做模拟题来查缺补漏是远远不够的。数学复习的最后阶段一定要重心后移,这是因为数学的考点、重点、难点大部分均在每本书的中间或最后几章,命制的综合题和大题也多数是在后面几章出现。

  数学一关于高等数学部分的考试重点在定积分、重积分、线面积分、无穷级数等章,而数学二、三的高等数学(微积分)部分的考试重点在微分中值定理、定积分等后面几章。

  复习线性代数最重要是向量的线性相关性、线性方程组、特征值与特征向量、二次型与正定矩阵等内容。这几章题型变化多,知识点的衔接与转换非常集中,便于命制综合题。

  复习概率统计的重点是多维随机变量及其分布以及随机变量的数字特征。

  二、进行有针对性的高效复习———综合题的解题策略

  所谓综合题就是考查多个知识点,即把前后章节的知识综合起来进行考核的试题。这类题目要求考生要学会分析问题,抓联系、抓总结,切实掌握与知识点之间的联系,真正理解基本概念的实质,融会贯通各概念之间的内在联系,形成知识网来分析问题和解决问题。

  数学考研试题大部分是复合型的。在复习高等数学时,一定要把极限论、微分学和积分学有机地结合起来,前后贯穿,灵活运用。在复习线性代数时,一定要以线性方程组为核心,前后融会贯通,灵活运用所学知识来分析问题和解决问题,不要将它们孤立割裂开来。比如行列式、矩阵、向量、线性方程组是线性代数的基本内容,它们不是孤立割裂的,而是相互渗透,紧密联系的。在复习概率统计时,考生要灵活运用所学知识,建立正确的概率摸型,综合运用极限、连续、导数、积分、广义积分、二重积分以及级数等知识去分析和解决实际问题,提高解综合题的能力。

  三、挥洒自如,宠辱不惊,调整好应试心理

  考前最后一段时间,特别是最后几天,记忆力特好,应充分利用。此时不宜再去复习具体的知识点,而应采取浮光掠影式的复习方式,应以轻松的心态,着眼于宏观的角度去发现和解决问题或快速地浏览一些特殊的题型,加深对其解题技巧的理解;或从头到尾翻一遍大纲和考研真题,在脑海里对其中每一个知识点留下最后的印象。 同时,对试题的难度和答题的方法要做到心中有数。

  各种在考研复习中考生要做到的是掌握核心,即万变不离其宗,抓住其形变而神不变之处才能轻松成功。

  考研数学备考的规划

  将数学基础备考进行到底

  基础性题目在考研数学的考试中所占比例相当大,技巧性题目的解决往往也建立在深入掌握基础知识的前提下,所以在复习的时候必须重视基础知识的摄取。专家指出:要做到对基础知识理解透彻、深入、融会贯通的层次其实也并非难事,这个过程简单说就是一个你与这门科磨合的过程。

  数学复习中要需要随时联系基础知识,有很多同学觉得解题靠的是技巧,所以复习时把精力都放在掌握技巧上,从而忽略了基础知识的深入理解,这样做其实会得不偿失。如今是强化提升阶段,重点是整体把握各个考点,以做题为主。这个时期,需要掌握知识的横向及纵向联系以及跨科目的蛛网式的知识交错,得花大量精力来理清这些联系,以达到百变不乱的程度。这仍然依赖于基础知识的理解与掌握程度。另外,基础知识在掌握做题技巧上也起很大的促进作用。比如对于积分中利用对称性解题是能够极大简化计算的一种技巧,虽然能够用死记硬背的方式照猫画虎,但如果在掌握基本的积分概念的基础上理解其深刻含义,那么在做题的时候就能手到擒来。定积分的本质是和的极限,几何上表现为曲边梯形的面积,那么利用和式及极限的性质来理解并推导定积分的性质便是水到渠成的事情。重积分、曲线积分及曲面积分都是建立在定积分的基础之上,它们的本质都是某个和式的极限,也都有其几何上的形象,它们也都可以从源头上进行理解与记忆。

  十一月 考研数学复习突破是关键

  考研数学的秘诀就是靠练习。那么,数学做题应该遵循怎样的规律才能达到良好的复习效果呢? 建议考生要对所复习用的一本资料上的例题和每个章节后的习题认真练习,做到做一道题保证会一道题。近几年考研数学的一个命题趋势是:难题偏题怪题没有了,取而代之的是基础题型,至少占有60%.中档题占30%,难题大约占有10%,而对于中档题或者较难题,如果对知识点掌握扎实熟练的话,那么难题在此也不是很难的了。所以关键是要抓基础,打牢基础,才能在考试中取得高分。

  另外,建议准备一个“错题集”,将自己在复习过程中发现的错题或不会做的题收集起来,分析一下做错或者不会做的原因在哪个方面,是对题型不熟悉,还是对知识点不清楚,还是因为没有记清楚公式等等。隔一段时间回顾一下“错题集”中的内容,对知识的巩固和提高都是很有帮助的。考研数学做题主旨只要是:求稳而不求多、不求快,力争做到做完此阶段应该做完的题,对每个题的知识点和相应的题型都有一定掌握,要多思考,做到举一反三。只要大家坚持不懈,持之以恒,这样积累到最后,一定会使你受益非浅,你的努力加上正确的学习方法,相信大家在数学考试中一定会取得很好的成绩

  考研数学冲刺单选与证明题解题技巧

  单选题经典解题技巧

  1.推演法。提示条件中给出一些条件或者一些数值,你很容易判断,那这样的题就用推演法去做。推演法实际上是一些计算题,简单一点的计算题。那么从提示条件中往后推,推出哪个结果选择哪个。

  2.赋值法。给一个数值马上可以判断我们这种做法对不对,这个值可以加在给出的条件上,也可以加在被选的4个答案中的其中几个上,我们加上去如果得出和我们题设的条件矛盾,或者是和我们已知的事实相矛盾。比方说2小于1就是明显的错误,所以把这些排除了,排除掉3个最后一个肯定是正确的。

  3.举反例排除法。这是针对提示中给出的函数是抽象的函数,抽象的对立面是具体,所以我们用具体的例子来核定,这个跟我们刚才的赋值法有某种相似之处。一般来讲举的范例是越简单越好,而且很多考题你只要简单的看就可以看出他的错误点。

  4.类推法。从最后被选的答案中往前推,推出哪个错误就把哪个否定掉,再换一个。我们推出3个错误最后一个肯定是正确的。后面三种方法有些相似之处,类推法这种方法是费时费力的,一般来讲我们不太用。

  总结:经常进行自我总结,错题总结能逐渐提高解题能力。大家可以在学完每一章后,自己通过画图的形式回忆这章有哪些知识点,有哪些定理,他们之间有些什么联系,如何应用等;对做错的题分析一下原因:概念不清楚、定理用错了还是计算粗心?数学思维方法是数学的精髓,只有对此进行归纳、领会、应用,才能把数学知识与技能转化为分析问题、解决问题的能力,使解题能力“更上一层楼”。

  证明题的解法与技巧

  1.结合几何意义记住零点存在定理、中值定理、泰勒公式、极限存在的两个准则等基本原理,包括条件及结论。

  知道基本原理是证明的基础,知道的程度(即就是对定理理解的深入程度)不同会导致不同的推理能力。如2006年数学一真题第16题(1)是证明极限的 存在性并求极限。只要证明了极限存在,求值是很容易的,但是如果没有证明第一步,即使求出了极限值也是不能得分的。因为数学推理是环环相扣的,如果第一步未得到结论,那么第二步就是空中楼阁。这个题目非常简单,只用了极限存在的两个准则之一:单调有界数列必有极限。只要知道这个准则,该问题就能轻松解决,因为对于该题中的数列来说,“单调性”与“有界性”都是很好验证的。像这样直接可以利用基本原理的证明题并不是很多,更多的是要用到第二步。

  2.借助几何意义寻求证明思路

  一个证明题,大多时候是能用其几何意义来正确解释的,当然最为基础的是要正确理解题目文字的含义。如2007年数学一第19题是一个关于中值定理的证明题,可以在直角坐标系中画出满足题设条件的函数草图,再联系结论能够发现:两个函数除两个端点外还有一个函数值相等的点,那就是两个函数分别取最大值的点(正确审题:两个函数取得最大值的点不一定是同一个点)之间的一个点。这样很容易想到辅助函数F(x)=f(x)-g(x)有三个零点,两次应用罗尔中值定理就能得到所证结论。再如2005年数学一第18题(1)是关于零点存在定理的证明题,只要在直角坐标系中结合所给条件作出函数y=f(x)及 y=1-x在[0,1]上的图形就立刻能看到两个函数图形有交点,这就是所证结论,重要的是写出推理过程。从图形也应该看到两函数在两个端点处大小关系恰好相反,也就是差函数在两个端点的值是异号的,零点存在定理保证了区间内有零点,这就证得所需结果。如果第二步实在无法完满解决问题的话,转第三步。


猜你感兴趣:

1.考研数学冲刺阶段的复习攻略

2.考研数学冲刺阶段该如何面对复习

3.考研数学冲刺阶段提高复习效果方法

4.考研数学冲刺阶段复习的指南攻略

5.考研高等数学如何高效复习

上一篇:考研高等数学复习的技巧 下一篇:考研数学线性代数怎么复习
[报考指导]相关推荐