考研资讯 百文网手机站

考研数学高数微分方程的应用解读

时间:2021-12-05 16:25:07 考研资讯 我要投稿

考研数学高数微分方程的应用解读

  我们在准备考研数学的高数复习时,需要把微分方程的应用了解清楚。小编为大家精心准备了考研数学高数微分方程应用指导,欢迎大家前来阅读。

考研数学高数微分方程的应用解读

  考研数学高数微分方程应用解析

  1.关于列方程

  有关微分方程的应用题,首先是建立方程,这要根据题意,分析条件,搞清问题所涉及到的基本物理或几何量的意义,并结合其他相关知识,通过逻辑推理等综合手段,使问题得到解决.

  列方程,建立数学模型,是考查考生综合应用能力的重要方面,是考试的重点内容之一,同时也是考生的难点,考生要通过练习,结合自己的实际,总结建立微分方程的步骤及注意事项(例如正负号的处理).

  有些微分方程可能是数学问题中提供的,例如有的微分方程是由积分方程提出的,有的来自线积分与路径无关的充要条件,或微分式子是某个原函数的全微分.此时应转化成微分方程来求解,同时还应注意到所给条件中可能还提供了函数的某个函数值、导数值(即初始条件)等信息.

  2.关于解方程

  首先,应掌握方程类型的判别,因为不同类型的方程有不同的解法,同一个方程,可能属于多种不同的类型,则应选择较易求解的方法.对于一阶方程,通常可按可分离变量的方程、齐次方程、一阶线性方程、伯努利方程、全微分方程的顺序进行,特别是一阶线性方程和伯努利方程还应注意到有时可以以x为因变量,y为自变量得到,对于高阶方程,一般可按线性方程、欧拉方程、高阶可降阶的方程进行,

  第二,是求解方程,不同类型的方程有不同的求解方法,应该熟练掌握,典型方程可用固定的变量置换化简并求解(如齐次方程、线性方程、伯努利方程、高阶可降阶方程、欧拉方程等),如用公式求解一阶线性方程,则应注意公式应用的条件——方程应化成标准形式,对于线性方程,应搞清解的结构理论及齐次线性常系数方程的特征方程及非齐次方程的特解的设定等.

  第三,对于不属于典型方程的方程,作变量代换是一个有效途径,作什么样的变量代换要结合具体方程的特点来考虑,一般以克服求解方程的困难为目标,选择变量代换可采用试探方式,合适的、使方程得到化简并顺利求解的则采用,否则应重新选择,平时应多练习,这样可以帮助你选择合适的变量代换.

  考研数学高数三步练就微积分高手

  一、夯实基础

  事实上,数学三考微积分相关内容的题目都不是太难,但是出题老师似乎对基本计算及应用情有独钟,所以对基础知识扎扎实实地复习一遍是最好的应对方法。阅读教材虽然是奠定基础的一种良方,但参考一下一些辅导资料,如《微积分过关与提高》等,能够有效帮助同学们从不同角度理解基本概念、基本原理,加深对定理、公式的印象,增加基本方法及技巧的摄入量。对基本内容的复习不能只注重速度而忽视质量。在看书时带着思考,并不时提出问题,这才是好的读懂知识的方法。

  二、关注重点知识

  在看教材及辅导资料时要依三大块分清重点、次重点、非重点。阅读数学图书与其他文艺社科类图书有个区别,就是内容没有那么强的故事性,同时所述理论有一定抽象性,所以在此再一次提醒同学们读书需要不断思考其逻辑结构。比如在看函数极限的性质中的.局部有界性时,能够联系其在几何上的表现来理解,并思考其实质含义及应用。三大块内容中,一元函数的微积分是基础,定义一元函数微积分的极限及微积分的主要研究对象——函数及连续是基础中的基础。这个部分也是每年必定会出题考查的,必须引起注意。多元函数微积分,主要是二元函数微积分,这个部分大家需要记很多公式及解题捷径。无穷级数和常微分方程与差分方程部分的重点很容易把握,考点就那几个,需要注意的是其与实际问题结合出题的情况。

  三、适度做题

  大量做题是学习数学区别与其他文科类科目的最大区别。在大学里,我们常常会看到,平时不断辗转于各自习室占坐埋头苦干的多数是学数学的,而那些平时总抱着小说看,还时不时花前月下的同学多半是文科院系的。并不是对两个院系的同学有什么诟病,这种状况只是所学专业特点使然。在备考研究生考试数学的时候,如果充分了解其特点,就能对症下药。微积分的选择及填空题考查的是基本知识的掌握程度及技巧的灵活运用,可做做《考研数学客观题1500题》,必定能达到所希望的结果。微积分的解答题注重计算及综合应用能力,平时多做这方面的题目既可以练习做题速度及提高质量,也能检测复习效果。

  考研数学概率掌握30种运算

  (1)确定事件间的关系,进行事件的运算;

  (2)利用事件的关系进行概率计算;

  (3)利用概率的性质证明概率等式或计算概率;

  (4)有关古典概型、几何概型的概率计算;

  (5)利用加法公式、条件概率公式、乘法公式、全概率公式和贝叶斯公式计算概率;

  (6)有关事件独立性的证明和计算概率;

  (7)有关独重复试验及伯努利概率型的计算;

  (8)利用随机变量的分布函数、概率分布和概率密度的定义、性质确定其中的未知常数或计算概率;

  (9)由给定的试验求随机变量的分布;

  (10)利用常见的概率分布(例如(0-1)分布、二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布等)计算概率;

  (11)求随机变量函数的分布(12)确定二维随机变量的分布;

  (13)利用二维均匀分布和正态分布计算概率;

  (14)求二维随机变量的边缘分布、条件分布;

  (15)判断随机变量的独立性和计算概率;

  (16)求两个独立随机变量函数的分布;

  (17)利用随机变量的数学期望、方差的定义、性质、公式,或利用常见随机变量的数学期望、方差求随机变量的数学期望、方差;

  (18)求随机变量函数的数学期望;

  (19)求两个随机变量的协方差、相关系数并判断相关性;

  (20)求随机变量的矩和协方差矩阵;

  (21)利用切比雪夫不等式推证概率不等式;

  (22)利用中心极限定理进行概率的近似计算;

  (23)利用t分布、χ2分布、F分布的定义、性质推证统计量的分布、性质;

  (24)推证某些统计量(特别是正态总体统计量)的分布;

  (25)计算统计量的概率;

  (26)求总体分布中未知参数的矩估计量和极大似然估计量;

  (27)判断估计量的无偏性、有效性和一致性;

  (28)求单个或两个正态总体参数的置信区间;

  (29)对单个或两个正态总体参数假设进行显著性检验;

  (30)利用χ2检验法对总体分布假设进行检验。


《考研数学高数微分方程的应用解读.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

资深写手 • 1对1服务

文章代写服务

品质保证、原创高效、量身定制满足您的需求

点击体验

【考研数学高数微分方程的应用解读】相关文章:

考研数学高数微分方程应用解读12-06

考研数学高数复习的技巧12-12

考研数学高数的复习要点12-12

考研数学高数考点的预测12-15

考研数学高数复习的方法12-05

考研数学高数考试的重点12-05

考研数学高数的复习重点12-21

考研数学高数复习的要点11-14

考研数学高数有哪些考点12-15

文章代写服务

资深写手 · 帮您写文章

品质保证、原创高效、量身定制满足您的需求

点击体验

文章代写服务

资深写手 · 帮您写文章

品质保证、原创高效、量身定制满足您的需求

点击体验
ai帮你写文章
一键生成 高质量 不重复
微信扫码,即可体验

考研数学高数微分方程的应用解读

  我们在准备考研数学的高数复习时,需要把微分方程的应用了解清楚。小编为大家精心准备了考研数学高数微分方程应用指导,欢迎大家前来阅读。

考研数学高数微分方程的应用解读

  考研数学高数微分方程应用解析

  1.关于列方程

  有关微分方程的应用题,首先是建立方程,这要根据题意,分析条件,搞清问题所涉及到的基本物理或几何量的意义,并结合其他相关知识,通过逻辑推理等综合手段,使问题得到解决.

  列方程,建立数学模型,是考查考生综合应用能力的重要方面,是考试的重点内容之一,同时也是考生的难点,考生要通过练习,结合自己的实际,总结建立微分方程的步骤及注意事项(例如正负号的处理).

  有些微分方程可能是数学问题中提供的,例如有的微分方程是由积分方程提出的,有的来自线积分与路径无关的充要条件,或微分式子是某个原函数的全微分.此时应转化成微分方程来求解,同时还应注意到所给条件中可能还提供了函数的某个函数值、导数值(即初始条件)等信息.

  2.关于解方程

  首先,应掌握方程类型的判别,因为不同类型的方程有不同的解法,同一个方程,可能属于多种不同的类型,则应选择较易求解的方法.对于一阶方程,通常可按可分离变量的方程、齐次方程、一阶线性方程、伯努利方程、全微分方程的顺序进行,特别是一阶线性方程和伯努利方程还应注意到有时可以以x为因变量,y为自变量得到,对于高阶方程,一般可按线性方程、欧拉方程、高阶可降阶的方程进行,

  第二,是求解方程,不同类型的方程有不同的求解方法,应该熟练掌握,典型方程可用固定的变量置换化简并求解(如齐次方程、线性方程、伯努利方程、高阶可降阶方程、欧拉方程等),如用公式求解一阶线性方程,则应注意公式应用的条件——方程应化成标准形式,对于线性方程,应搞清解的结构理论及齐次线性常系数方程的特征方程及非齐次方程的特解的设定等.

  第三,对于不属于典型方程的方程,作变量代换是一个有效途径,作什么样的变量代换要结合具体方程的特点来考虑,一般以克服求解方程的困难为目标,选择变量代换可采用试探方式,合适的、使方程得到化简并顺利求解的则采用,否则应重新选择,平时应多练习,这样可以帮助你选择合适的变量代换.

  考研数学高数三步练就微积分高手

  一、夯实基础

  事实上,数学三考微积分相关内容的题目都不是太难,但是出题老师似乎对基本计算及应用情有独钟,所以对基础知识扎扎实实地复习一遍是最好的应对方法。阅读教材虽然是奠定基础的一种良方,但参考一下一些辅导资料,如《微积分过关与提高》等,能够有效帮助同学们从不同角度理解基本概念、基本原理,加深对定理、公式的印象,增加基本方法及技巧的摄入量。对基本内容的复习不能只注重速度而忽视质量。在看书时带着思考,并不时提出问题,这才是好的读懂知识的方法。

  二、关注重点知识

  在看教材及辅导资料时要依三大块分清重点、次重点、非重点。阅读数学图书与其他文艺社科类图书有个区别,就是内容没有那么强的故事性,同时所述理论有一定抽象性,所以在此再一次提醒同学们读书需要不断思考其逻辑结构。比如在看函数极限的性质中的.局部有界性时,能够联系其在几何上的表现来理解,并思考其实质含义及应用。三大块内容中,一元函数的微积分是基础,定义一元函数微积分的极限及微积分的主要研究对象——函数及连续是基础中的基础。这个部分也是每年必定会出题考查的,必须引起注意。多元函数微积分,主要是二元函数微积分,这个部分大家需要记很多公式及解题捷径。无穷级数和常微分方程与差分方程部分的重点很容易把握,考点就那几个,需要注意的是其与实际问题结合出题的情况。

  三、适度做题

  大量做题是学习数学区别与其他文科类科目的最大区别。在大学里,我们常常会看到,平时不断辗转于各自习室占坐埋头苦干的多数是学数学的,而那些平时总抱着小说看,还时不时花前月下的同学多半是文科院系的。并不是对两个院系的同学有什么诟病,这种状况只是所学专业特点使然。在备考研究生考试数学的时候,如果充分了解其特点,就能对症下药。微积分的选择及填空题考查的是基本知识的掌握程度及技巧的灵活运用,可做做《考研数学客观题1500题》,必定能达到所希望的结果。微积分的解答题注重计算及综合应用能力,平时多做这方面的题目既可以练习做题速度及提高质量,也能检测复习效果。

  考研数学概率掌握30种运算

  (1)确定事件间的关系,进行事件的运算;

  (2)利用事件的关系进行概率计算;

  (3)利用概率的性质证明概率等式或计算概率;

  (4)有关古典概型、几何概型的概率计算;

  (5)利用加法公式、条件概率公式、乘法公式、全概率公式和贝叶斯公式计算概率;

  (6)有关事件独立性的证明和计算概率;

  (7)有关独重复试验及伯努利概率型的计算;

  (8)利用随机变量的分布函数、概率分布和概率密度的定义、性质确定其中的未知常数或计算概率;

  (9)由给定的试验求随机变量的分布;

  (10)利用常见的概率分布(例如(0-1)分布、二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布等)计算概率;

  (11)求随机变量函数的分布(12)确定二维随机变量的分布;

  (13)利用二维均匀分布和正态分布计算概率;

  (14)求二维随机变量的边缘分布、条件分布;

  (15)判断随机变量的独立性和计算概率;

  (16)求两个独立随机变量函数的分布;

  (17)利用随机变量的数学期望、方差的定义、性质、公式,或利用常见随机变量的数学期望、方差求随机变量的数学期望、方差;

  (18)求随机变量函数的数学期望;

  (19)求两个随机变量的协方差、相关系数并判断相关性;

  (20)求随机变量的矩和协方差矩阵;

  (21)利用切比雪夫不等式推证概率不等式;

  (22)利用中心极限定理进行概率的近似计算;

  (23)利用t分布、χ2分布、F分布的定义、性质推证统计量的分布、性质;

  (24)推证某些统计量(特别是正态总体统计量)的分布;

  (25)计算统计量的概率;

  (26)求总体分布中未知参数的矩估计量和极大似然估计量;

  (27)判断估计量的无偏性、有效性和一致性;

  (28)求单个或两个正态总体参数的置信区间;

  (29)对单个或两个正态总体参数假设进行显著性检验;

  (30)利用χ2检验法对总体分布假设进行检验。